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Editor’s key points
† Advances in the pathophysiology of shock and

coagulation have led to changes in trauma
resuscitation.

† These include reduced volume replacement/
deliberate hypotension to reduce bleeding and
aggressive coagulation management.

† Further studies are required to confirm improved
outcomes resulting from these approaches.

Summary. Recommendations for resuscitation of patients in early
haemorrhagic shock, with active ongoing bleeding, have evolved in
recent years. This review covers current theories of the pathophysiology
of shock and recommended treatments, including damage control
surgery, deliberate hypotensive management, administration of
antifibrinolytics, early support of the coagulation system, and the
possible role of deep anaesthesia. Future directions for resuscitation
research are discussed.
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Haemostatic resuscitation describes the process of restoring
and sustaining normal tissue perfusion to the patient present-
ing in uncontrolled haemorrhagic shock, with an emphasis on
preservation of effective clotting. The concept incorporates
elements of first aid, trauma surgery, and operative anaesthe-
sia, and covers relevant medical care from the moment of
injury forward until haemodynamic stability is achieved. It is
team-based rather than speciality-based, and has been
driven by hard-won experience and evidence-based scientific
research in both civilian trauma centres and the crucibles of
combat casualty care in Iraq and Afghanistan. Haemostatic
resuscitation acknowledges the need to make clinical deci-
sions in the face of uncertainty regarding the patient’s prior
medical condition, the anatomic source of bleeding, and the
expected volume and duration of haemorrhage. It is based
on emerging recognition of the way in which coagulopathy
develops after injury, and on two decades of research—
often highly controversial—into clinical techniques to
improve survival. This manuscript will describe the pathophysi-
ology of haemorrhagic shock and will trace the evolution of re-
suscitation science in recent years, concluding with a review of
current controversies and areas of active research.

The pathophysiology of haemorrhagic
shock
Figure 1 is a representationof thephysiological impact of severe
injury, illustrating that trauma is both a local and a systemic
disease. Pathophysiology begins with direct damage to tissue
by external energy (the definition of trauma). This creates
both tissue injury and pain. Disruption of blood vessels and
solid organ parenchyma causes haemorrhage and a decrease
in cardiac output. Systemic compensation occurs through

increased sympathetic outflow, leading to increased heart
rate and vasoconstriction of non-essential tissues.1 When
bleeding is severe enough to overwhelm systemic compensa-
tion, the result is tissue hypoperfusion, or shock.

Damaged and under-perfused cells become distressed,
and react through release of toxins and mediators.2 Anaer-
obic metabolism generates metabolic by-products (lactate
and other acids) that create further damage both locally
and systemically. Hundreds of other compounds are released
by the ischaemic cell, including interleukins, tumour necrosis
factor, and complement proteins.3 These bioactive molecules
in turn create an amplified reaction throughout the body,
transforming a local event into a systemic disease.

The full extent of factor release from injured and ischae-
mic cells is incompletely understood, in part because it
varies from one cell type to another and across the spectrum
of human genomic and proteonomic expression. Recent
active research in this area, however, has revealed a key
component of this response. Thrombin triggers liberation of
protein C from thrombomodulin; protein C binds to plasmino-
gen activator inhibitor-1, thus producing a fibrinolytic state.4

Alternative explanations for the fibrinolytic state observed
after major trauma have also been advanced.5 While under-
standable in a teleological sense—most cellular ischaemia
arises from thrombosis—this is a maladaptive response to
traumatic haemorrhage. Discovery of this effect began with
a clinical observation that severely injured trauma patients
were coagulopathic even before significant blood loss or dilu-
tion with resuscitative fluids had occurred.6 7 Further, those
patients with altered coagulation function at the time of hos-
pital admission had substantially worse outcomes than
similar patients who were not coagulopathic (defined as
an international normalized ratio .1.5), even with similar

British Journal of Anaesthesia 109 (S1): i39–i46 (2012)
doi:10.1093/bja/aes389

& The Author [2012]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

mailto:r.dutton@asahq.org
mailto:r.dutton@asahq.org
mailto:r.dutton@asahq.org


degrees of injury (Fig. 2).7 8Whether this finding represents dif-
ferences in blood loss at the timeof admissionora genetic pre-
disposition to mortality after trauma is unknown, but is an
important question for future study.

In any case, coagulopathy leads to increased haemorrhage
and thus progression of ischaemia, causing further cellular
injury in a downward spiral that will lead to death from exsan-
guination if not interrupted. Consumption of available clotting
factor and platelet reserves, serum acidosis, and systemic
hypothermia will contribute to the ‘bloody vicious cycle’ of
bleeding, coagulopathy, and further bleeding.9 Medical care
itself contributes an iatrogenic component to the pathophysi-
ology of acute haemorrhage. Traditional thinking about resus-
citation, based on animal models of controlled haemorrhage
developed in the 1950s, emphasized the importance of fluid
volume administration,10 even though clinical data suggested
that administering fluids during uncontrolled haemorrhage
was associated with increased bleeding.11 This is largely a
mechanical phenomenon: increased fluid volume increases
cardiac output through the Frank–Starling relationship,
leading to increased arterial pressure. Increased pressure
forces more fluid out of the damaged circulation, and
‘washes away’ early extra-vascular clots.12 Other effects are
more subtle. Asanguineous resuscitation fluids—isotonic crys-
talloids and non-blood colloids—dilute the concentration of
red cells, clotting factors, and platelets.12 Exogenous fluids
are likely to be cooler than body temperature, contributing
to hypothermia. Rapid administration of crystalloids
damages the endothelial glycocalyx, leading to increased ex-
travasation.13 Research also suggests that crystalloids may
have pro-inflammatory side-effects.14

Death from haemorrhagic shock occurs via one of the two
common pathways. Acute exsanguination occurs early after
injury and is largely the result of anatomically uncorrectable
lesions. Death arises from failure of the cardiovascular
system to maintain minimal cardiac output. Subacute

death occurs when anatomic control is obtained—preserving
cerebral and coronary perfusion short of acute failure—but
the cumulative burden of ischaemia proves lethal.15 This is
the patient who survives initial surgery and resuscitation
only to die days, weeks, or even months later as the result
of multiple organ system failure. Acute lung injury is
common after severe trauma, as the combined result of
direct pulmonary injury, aspiration, massive transfusion, is-
chaemia, and systemic inflammation. Pulmonary failure
may be followed by acute renal failure, gut dysfunction,
and immune system compromise, leading to serial septic
episodes and episodic haemodynamic instability until inten-
sive care is no longer effective.

Goals of early resuscitation
Early resuscitation is defined as medical care provided from
the moment of injury until definitive anatomic control of
haemorrhage is achieved, typically through surgery or angio-
graphic embolization.16 Early resuscitation is characterized
by uncertainty as to the source of bleeding, the quantity of
blood lost, and the anticipated duration of haemorrhage.
While the goal of resuscitation in general is to restore
normal systemic oxygen delivery, during early resuscitation
the advantage of reducing ischaemia must be weighed
against the iatrogenic prolongation of haemorrhage which
was outlined above.

During active haemorrhage, clinical goals have shifted
from the traditional approach of rapid bolus fluid administra-
tion in an effort to normalize arterial pressure. A more
nuanced approach is recommended, which attempts to pre-
serve and support coagulation while providing the least
cardiac output necessary to sustain vital organ function.
Because the threshold of lethal (or organ specific) ischaemia
is heterogeneous across the population, early resuscitation
requires substantial clinical judgement and experience, and
management recommendations are guidelines rather than
definitive standards of care.

Table 1 shows the major components of haemostatic re-
suscitation and the approximate level of evidence in
support of each recommendation. Each of these components
is discussed in detail below. Once bleeding is definitively con-
trolled by surgery, angiography, or the passage of time the
goals for resuscitation become simpler. The goal of late re-
suscitation is to restore adequate cardiac output, while facili-
tating stabilization of vital signs, laboratory values, and blood
composition. Further fluid therapy after the resolution of
haemorrhage should be guided by monitors and measures,
including invasive or non-invasive assessments of cardiac
output and tissue perfusion, and serial assessment of arterial
blood gases and serum lactate.17 It is worth noting that
many previously healthy trauma patients will achieve
normal vital signs after haemorrhage while still being sub-
stantially under-perfused. This phenomenon, known as
occult hypoperfusion, creates the potential for ongoing
ischaemic injury if it is not recognized by more advanced
laboratory or diagnostic monitoring.18
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Fig 1 The pathophysiology of haemorrhagic shock.
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Expedited ‘damage control’ surgery
The concept of damage control is adopted from the US Navy,
which espoused the theory that response to catastrophe
should be prioritized to keeping the ship afloat. In medical
terms, this means a hierarchy of resuscitative efforts aimed
at keeping the patient alive long enough to reach the next
level of care. For pre-hospital care, especially in the military,
there has been an increased focus on early control of exsan-
guinating haemorrhage and more widespread use of arterial
tourniquets.19 In the operating theatre, this theory dictates
that initial surgery on a haemodynamically unstable, actively
bleeding trauma patient should be focused on anatomic
control of bleeding, with repair of less significant or time-
critical procedures deferred until resuscitation is com-
pleted.20 The patient undergoing exploratory laparotomy,
for example, will have wide abdominal exposure, packing,

ligation of bleeding vessels, and rapid excision of badly
damaged solid organs. Bowel injuries will be managed by
stapler control of contamination, without attempted recon-
struction. Definitive closure will be deferred in favour of
packing and temporary coverage with a sterile drape. Asso-
ciated long-bone or pelvic fractures will be externally stabi-
lized.21 Once haemostasis is achieved, the patient is
transferred to the intensive care unit for completion of resus-
citation. Damage control is intended to minimize operating
theatre time, minimize ongoing fluid administration, and pre-
serve normothermia, thus reducing the secondary surgical
and inflammatory insult that would arise from extensive
bowel or soft-tissue reconstruction, orthopaedic manipula-
tion, or other less essential procedures.

The value of rapid control of ongoing haemorrhage has
substantial face validity, and is not controversial. The
damage control approach has been studied a number of
times and found to be beneficial.22 While details vary from
patient to patient and institution to institution, the overall
philosophy is widely accepted and applied in both military
and civilian care. For the anaesthesiologist, the value of ex-
pediting surgery is likely to outweigh normal considerations
for elective surgery. Fasting time is not relevant because
the risk of exsanguination or ischaemic organ failure is far
greater than that of aspiration. Delaying surgery to obtain la-
boratory or radiological studies, await crossmatched blood
products, or place invasive monitors is contraindicated.
Instead, these activities should occur in parallel with the
central activity of getting the patient to theatre and
getting the surgery started.

Deliberate hypotension
During active haemorrhage, any fluid administration which
increases arterial pressure will also increase blood loss. This

Table 1 Elements of haemostatic resuscitation, and level of
evidence in support

Recommendation Evidence

Expedited anatomic
control

Strong; widely accepted

Deliberate hypotension Several prospective trials; widely
accepted

Early support of
coagulation

Antifibrinolytic therapy One large prospective trial, several
smaller studies; an emerging
standard

Early use of plasma
and platelets

Controversial; variable application in
clinical practice

Vasodilation with
anaesthetic agents

Theory only—minimal clinical data

Interaction of injury severity and admission INR on in-
hospital mortality
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Fig 2 Hospital mortality as a function of injury severity and coagulation status at the time of trauma centre admission. INR, international
normalized ratio; ISS, injury severity score. Reproduced with permission from Hess and colleagues.7
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was observed during the first widespread use of i.v. fluid
therapy for resuscitation, in World War I. Dr Walter Cannon,
a US Army surgeon, noted ‘Injection of a fluid that will in-
crease blood pressure has dangers in itself. . . . If the pressure
is raised before the surgeon is ready to check any bleeding
that might take place, blood that is sorely needed may be
lost’.11 There is more at work in this phenomenon than
passive physics. Fluid administration leads to increased
venous return to the heart, which increases myocardial wall
tension and acts through the Frank–Starling law to increase
cardiac output. Increased cardiac output reduces the reflex
vasoconstriction of haemorrhagic shock, allowing increased
blood flow into injured vascular beds.23 Increased pressure
will also disrupt and wash away the extraluminal clots
which initially limit haemorrhage.12 Any asanguineous fluid
used for resuscitation will decrease blood viscosity and will
dilute the concentration of clotting factors, red blood cells
(RBCs), and platelets at the site of haemorrhage.

The distinction between controlled haemorrhage, as in
the classic Wiggers model, and uncontrolled haemorrhage
was first explored in animal models in the 1990s. Results
from multiple resuscitation trials in pigs,24 23 rats,25 dogs,26

and sheep27 demonstrated that blood loss was reduced
during hypotension. Survival was improved with resuscitation
strategies that limited the amount of fluid administered or
titrated it to a lower than normal mean arterial pressure.
Attempting to achieve normotension during active haemor-
rhage consistently increased mortality.28

Two prospective randomized human trials of deliberate
hypotensive resuscitation were conducted in the 1990s,
and a third is underway now. The first trial, a landmark in
the history of resuscitation research, was published in
1994.29 Five hundred and ninety-eight hypotensive victims
of penetrating thoracoabdominal trauma were randomized
at the scene of injury to conventional fluid therapy or
minimal fluid therapy during the pre-hospital and emergency
department (ED) phases of care. The cohort given minimal
fluid had a significant survival advantage (70% vs 62%,
P¼0.04). A second trial randomized 110 hypotensive
trauma patients to ED and operating theatre management
targeted to a mean pressure of 60 vs 80 mm Hg until the de-
finitive control of haemorrhage.30 There was no difference in
survival between the groups. Preliminary results from the
third trial, underway now, show a beneficial effect of limiting
administered fluid.31

The majority of experimental evidence and clinical experi-
ence over the past two decades suggest that a lower than
normal arterial pressure should be targeted during early re-
suscitation. Advantages include reduced bleeding, more
rapid haemostasis, and better preservation of native coagu-
lation. Disadvantages are a delay in reperfusion of ischaemic
tissue and a prolonged state of shock. Questions remain
about the safe duration of deliberate hypotension (e.g.
during prolonged transport from a rural area)32 and about
the risk:benefit relationship in high-risk patients (e.g. those
with underlying cardiovascular disease, older age, or fresh
traumatic brain injury). These patients are likely more

vulnerable to ischaemic injury with low arterial pressure,33

but these patients are also at greater risk from longer and
more massive haemorrhage. The heterogeneous nature of
traumatic injury makes it unlikely that specific human trials
will be easy to accomplish, but the growth of trauma registry
reporting may make observational inference possible in the
near future.

Support of coagulation
Profound and irreversible coagulopathy is a universal finding
in trauma patients who die of exsanguination after reaching
the trauma centre alive.9 Better understanding of the
mechanisms involved, as described above, has led to resusci-
tation strategies emphasizing early support of coagulation.
In practice, this means earlier and more aggressive transfu-
sion of plasma, platelets, and factor concentrates. Clinicians
now recognize that to be successful, transfusion therapy
must often begin before a clear picture of the patient’s injur-
ies and physiology is available. This philosophy is reflected
most clearly in the battlefield resuscitation algorithms now
followed by both British34 and American35 forces operating
in Afghanistan, but elements of this approach have influ-
enced civilian trauma practice as well.36 Care begins with
control of any significant external haemorrhage. Direct pres-
sure to the wound is the first approach—potentially supple-
mented by a haemostatic bandage—followed by tourniquet
application when necessary and feasible. Arterial pressure
is allowed to remain low as long as there is evidence of crit-
ical organ perfusion (i.e. mentation). Crystalloid or colloid
fluid administration is minimized in favour of RBC and
plasma administered in approximately equal quantities. An
antifibrinolytic agent, typically tranexamic acid, is given as
soon as potentially lethal haemorrhage is suspected.37

Logistics are the key to early support of coagulation. The
need to expedite delivery of RBC and plasma has led to de-
velopment of massive transfusion protocols (MTPs) in most
large trauma centres.38 These deliver set quantities of RBC,
plasma, platelets, and sometimes adjuvant agents to the
bedside, often in response to a single phone call or compu-
terized order. Uncrossmatched type-O RBCs have an excel-
lent safety record and are the resuscitation product of
choice in any trauma patient in severe haemorrhagic
shock.39 Universal donor plasma is more difficult to provide
because of the relative scarcity of type AB blood and the
time required to thaw fresh-frozen units; a number of high-
volume trauma centres have overcome this barrier by stock-
piling plasma in liquid form.40 In military practice, it is
possible to obtain fresh whole blood from available donors
who have been pre-screened for viral disease,41 but this ap-
proach has not been replicated in civilian hospitals in the USA
or Great Britain. Studies on the effectiveness of MTPs are
almost uniformly positive; however, the data supporting
their value are observational, and usually based on before-
and-after methodology in single centres. It makes good in-
tuitive sense, however, that making blood products more
readily available at the bedside will improve resuscitation.
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The optimal ratio of plasma to RBC units is controversial.
Fresh whole blood, the ideal resuscitative fluid, has a ratio
of 1:1. Component therapy designed to replicate this can
achieve only marginally acceptable levels of RBC, clotting
factors, and platelets when the deleterious effects of dilution
and storage loss are considered (Fig. 3),42 suggesting that
any imbalance of one component over another will lead to
a critical deficiency. Examination of transfusion practice in
large trauma populations demonstrates that overall annual
use of plasma and RBC units will be about equal, while retro-
spectively examining use in patients who survive a massive
transfusion (more than 10 units of RBC in 24 h) also demon-
strates equal overall requirements for plasma and RBC.43 It is
worth noting that coagulation factor activity of plasma units
can vary, and that some of this variation may be averaged
out when a larger number of units are given. Other argu-
ments in favour of earlier and more vigorous use of plasma
include the observation of Chowdary and colleagues44 that
relatively large amounts are required for haemostasis, and
the previously reported antifibrinolytic activity of plasma
compared with normal saline fluid therapy.45 All of these
observations suggest that 1:1 might be a logical starting
point for transfusion when the severity of haemorrhage is
such that resuscitation must begin before laboratory values
are available.

Clinical evidence to support this theory is mixed. Unadjusted
retrospective studies of mortality demonstrate a strong associ-
ation between survival and increased administration of
plasma,46 but these studies are flawed by the heterogeneous
nature of the patients included and the real-world logistics of
transfusion. More severely injured patients are bleeding faster,
and are more likely to die after receiving RBC but before
plasma can reach the bedside. When survival bias is accounted
for, results are equivocal.47 A recent review of more than 20

studies of plasma:RBC ratio in clinical practice made this phe-
nomenon clear;48 studies that attempt to control for survival
bias show mixed results, with some demonstrating a mild
benefit to increasing plasma ratio and others showing no
effect. The most recent published work in this area used the
concept of instantaneous plasma deficit (RBC units–plasma
units) in surviving patients at each hourafter traumacentre ad-
mission to show that a smaller deficit was associated with
improved survival, but only in the first 2 h of care.49 More than
anything, this study demonstrated the time-dependent
nature of acute haemorrhagic shock. To date, no prospective
trials comparing different resuscitation ratios have been pub-
lished, although several are now underway.

Critics of ratio-based resuscitation algorithms note that dif-
ferent patients, with different injuries, must logically require
different treatments. Distrust of the empiric approach has
lent increased urgency to improving the speed and specificity
of early diagnostic technology. For actively bleeding patients,
this means point-of-care coagulation testing. Several studies
of the use of whole-blood viscoelastic testing to guide resusci-
tation are now underway, and preliminary results are encour-
aging. Unlike traditional prothrombin time and partial
thromboplastin time testing, viscoelastic tests can also
assess some aspects of platelet function, fibrinogen level,
and fibrinolysis. Viscoelastic testing may also be used to
guide factor-based resuscitation. Rather than ‘shotgun
therapy’ with plasma, some centres are studying directed ad-
ministration of prothrombin-complex concentrates, fibrino-
gen, other single-factor concentrates (e.g. factor VIIa), and
platelets.50 51 It remains to be seen if this approach will
providemore rapid haemostasis or reduce the long-termmor-
bidities associated with plasma transfusion.

Early support of coagulation includes administration of an
antifibrinolytic compound, typically tranexamic acid, in an

Whole blood 500 ml 
(Hct 38%–50%, Plts 150 K–400 K, coagulation factor activity100%)

1 unit packed red blood cells
(335 ml, Hct 55%)

1 unit plasma
(275 ml, coagulation factor activity 

averages 80%) 

1 unit platelets
(50 ml, Plts 5.5 x 1010)

160 ml anticoagulant added; centrifuged 

Patient receives 650 ml fluid
(Hct 29%, Plts 88 K, coagulation factor activity

averages 65%)

Fig 3 Dilution and storage loss reduce the effectiveness of component blood product therapy compared with fresh whole blood. Adopted from
Armand and Hess with permission.42
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effort to preserve clot stability during resuscitation. The very
large CRASH-2 trial randomized 20 000 trauma patients
worldwide to receive either placebo or tranexamic acid
within hours of admission, and demonstrated a significant
survival benefit with this therapy.52 Curiously, there was no
difference in transfusion requirements between the groups,
suggesting that tranexamic acid may have effects in addition
to antifibrinolysis. The earlier the drug was administered, the
more positive the effect. An observational trial from the
battlefield has corroborated the findings of CRASH-2,37 and
most trauma centres worldwide now include this step in
their trauma resuscitation protocol.

Restoring tissue perfusion
One component of modern resuscitation practice has been
postulated as beneficial, and included in military and civilian
algorithms,34 53 but never effectively studied. This is the early
and aggressive administration of anaesthetic agents to
reduce sympathetic outflow and dilate constricted vascular
beds. In a perfect world, one in which anaesthetics did not
have side-effects, every trauma patient would be deeply
anaesthetized during ED assessment and damage control
surgery. This approach has emotional and psychological ben-
efits, and is what most prospective patients would strongly
prefer. Unfortunately, any medication which reduces con-
sciousness or pain will also reduce sympathetic outflow,
and thus cardiac output.54 Many common anaesthetics—
propofol, midazolam, the volatile gases—are direct vasodila-
tors and negative inotropes, but even those that are relative-
ly ‘safe’ in euvolaemic patients (e.g. ketamine, opioids,
etomidate) can cause precipitous hypotension and even
pulseless cardiac arrest when administered to a patient in
haemorrhagic shock. The hypotensive consequences of
both direct vasodilation and indirect reduction in catechol-
amine release are further exacerbated by intubation and in-
stitution of positive pressure ventilation.

Concern with making a bad situation worse limits the
depth of anaesthesia provided to unstable trauma patients
in many centres. There have been no controlled studies
assessing anaesthetic depth with brain-activity monitors
during severe haemorrhage, but it is not unusual to
observe haemorrhagic shock patients in the operating
theatre who have received only small doses of an amnestic
(e.g. scopolamine), a neuromuscular blocking agent, and no
other analgesics or sedatives. While this does allow for pres-
ervation of native vasoconstrictive mechanisms, and thus
more arterial pressure with less fluid administered, it is also
sustaining the pathophysiology of shock: profound tissue
and organ system ischaemia. It is possible that long-term
outcomes will be improved by titrated administration of
fluids and anaesthetics, targeting a high-flow, low-pressure
vasodilated state that restores tissue perfusion without
raising arterial pressure high enough to increase bleeding.
With modern i.v. access, rapid infusion devices, and
fast-onset medications, the anaesthesiologist has the cap-
ability to perform this titration in real time, for example,

alternating small boluses of fluid (200 ml) with small doses
of fentanyl (50–100 mg) until a deep level of anaesthesia is
attained. This would allow for increased tissue perfusion,
leading to less release of fibrinolytic and inflammatory com-
pounds, without increasing the rate of haemorrhage.

This theory is rooted in the pathophysiology of shock. It
explains the observed difference in perioperative survival
for equivalent degrees of massive transfusion between
trauma patients (11% in a recent study)53 and elective
surgery patients (2–5%).55 It may also explain some of the
improved survival seen in animal models of deliberate hypo-
tension, relative to human studies, because experimental
animals must be adequately anaesthetized (for both
ethical and logistic reasons). To date, however, there are no
clinical studies which have evaluated the early use of deep
anaesthesia in trauma patients.

Current and future research directions
The following list summarizes controversial issues in resusci-
tation practice, and areas of ongoing research:

† Definition of the acceptable depth and duration of de-
liberate hypotension; development of ‘shock monitors’
that can help guide resuscitation.

† Comparison of plasma:platelet:RBC ratios for empiric re-
suscitation, and assessment of the risk:benefit ratio for
transfusion therapy in general.

† The ideal role for isolated factor and platelet products.
† Development of point-of-care coagulation monitors;

validation of their ability to improve outcomes.
† Further study of endothelial function during haemor-

rhagic shock and recovery.
† Study of the use of anaesthetic agents during resuscita-

tion, and the impact of depth of anaesthesia on survival
and morbidity.

Conclusion
Ideal resuscitation for the actively haemorrhaging trauma
patient has evolved rapidly in the past decade, and will con-
tinue to change in the years to come. Volume replacement,
transfusion of blood products, inflammatory mediation, and
anaesthetic management are all important to outcome,
and all deserving of further clinical study. Data from military
and civilian trauma care suggest that outcomes are improv-
ing,56 57 58 a trend that will continue with further research in
this active area of clinical science.
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